Flavonoid glycosides from Persea caerulea. Unraveling their interactions with SDS-micelles through matrix-assisted DOSY, PGSE, mass spectrometry, and NOESY.
نویسندگان
چکیده
Two flavonoid glycosides derived from rhamnopyranoside (1) and arabinofuranoside (2) have been isolated from leaves of Persea caerulea for the first time. The structures of 1 and 2 have been established by 1 H NMR, 13 C NMR, and IR spectroscopy, together with LC-ESI-TOF and LC-ESI-IT MS spectrometry. From the MS and MS/MS data, the molecular weights of the intact molecules as well as those of quercetin and kaempferol together with their sugar moieties were deduced. The NMR data provided information on the identity of the compounds, as well as the α and β configurations and the position of the glycosides on quercetin and kaempferol. We have also explored the application of sodium dodecyl sulfate (SDS) normal micelles in binary aqueous solution, at a range of concentrations, to the diffusion resolution of these two glycosides, by the application of matrix-assisted diffusion ordered spectroscopy (DOSY) and pulse field gradient spin echo (PGSE) methodologies, showing that SDS micelles offer a significant resolution which can, in part, be rationalized in terms of differing degrees of hydrophobicity, amphiphilicity, and steric effects. In addition, intra-residue and inter-residue proton-proton distances using nuclear Overhauser effect build-up curves were used to elucidate the conformational preferences of these two flavonoid glycosides when interacting with the micelles. By the combination of both diffusion and nuclear Overhauser spectroscopy techniques, the average location site of kaempferol and quercetin glycosides has been postulated, with the former exhibiting a clear insertion into the interior of the SDS-micelle, whereas the latter is placed closer to the surface. Copyright © 2016 John Wiley & Sons, Ltd.
منابع مشابه
Evaluation of flavonoids binding to DNA duplexes by electrospray ionization mass spectrometry.
In this study, electrospray ionization mass spectrometry (ESI-MS) was used to investigate the binding interactions of ten flavonoid aglycones and ten flavonoid glycosides with DNA duplexes. Relative binding affinities of the flavonoids toward DNA duplexes were estimated based on the fraction of bound DNA. The results revealed that the 4'-OH group of flavonoid aglycones was essential for their D...
متن کاملLaser-Induced Hydrogen Radical Removal in UV MALDI-MS Allows for the Differentiation of Flavonoid Monoglycoside Isomers
Negative-ion matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectra and tandem mass spectra of flavonoid mono-O-glycosides showed the irregular signals that were 1 and/or 2 Da smaller than the parent deprotonated molecules ([M - H](-)) and the sugar-unit lost fragment ions ([M - Sugar - H](-)). The 1 and/or 2 Da mass shifts are generated with the removing of a neutral h...
متن کاملMatrix-assisted diffusion-ordered spectroscopy: mixture resolution by NMR using SDS micelles.
Diffusion-ordered spectroscopy (DOSY) is a powerful technique for mixture analysis, but in its basic form it cannot separate the component spectra for species with very similar diffusion coefficients. It has been recently demonstrated that the component spectra of a mixture of isomers with nearly identical diffusion coefficients (the three dihydroxybenzenes) can be resolved using matrix-assiste...
متن کاملDifferentiation of flavonoid glycoside isomers by using metal complexation and electrospray ionization mass spectrometry.
The elucidation of flavonoid isomers is accomplished by electrospray ionization tandem mass spectrometry (ESI-MS/MS) via formation and collisional activated dissociation (CAD) of metal/flavonoid complexes containing an auxiliary ligand. Addition of a metal salt and a suitable neutral auxiliary ligand to flavonoids in solution results in the formation of [M(II) (flavonoid-H) ligand]+ complexes b...
متن کاملNatural product mixture analysis by matrix-assisted DOSY using Brij surfactants in mixed solvents
The assignment of NMR signals to specific components in amixture is a challenging task. Diffusion-Ordered Spectroscopy (DOSY) has provided important progress in this area, allowing the signals originating from individual components of different molecular sizes to be distinguished. However, when the sizes of the compounds are similar and/or the spectra are overlapped, signal assignment can easil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in chemistry : MRC
دوره شماره
صفحات -
تاریخ انتشار 2016